Welcome to Folding@home project


Folding@home is a distributed computing project -- people from throughout the world download and run software to band together to make one of the largest supercomputers in the world. Every computer takes the project closer to our goals. Folding@home uses novel computational methods coupled to distributed computing, to simulate problems millions of times more challenging than previously achieved.

Main goals

Protein folding is linked to disease, such as Alzheimer's, ALS, Huntington's, Parkinson's disease, and many Cancers. Moreover, when proteins do not fold correctly (i.e. "misfold"), there can be serious consequences, including many well known diseases, such as Alzheimer's, Mad Cow (BSE), CJD, ALS, Huntington's, Parkinson's disease, and many Cancers and cancer-related syndromes.

Proteins are biology's workhorses -- its "nanomachines." Before proteins can carry out these important functions, they assemble themselves, or "fold." The process of protein folding, while critical and fundamental to virtually all of biology, in many ways remains a mystery.We have had several successes. 

We have had several successes. You can read about them on our Science page.


Why is protein folding so difficult to understand?


It's amazing that not only do proteins self-assemble -- fold -- but they do so amazingly quickly: some as fast as a millionth of a second. While this time is very fast on a person's timescale, it's remarkably long for computers to simulate. In fact, it takes about a day to simulate a nanosecond (1/1,000,000,000 of a second). Unfortunately, proteins fold on the tens of microsecond timescale (10,000 nanoseconds). Thus, it would take 10,000 CPU days to simulate folding -- i.e. it would take 30 CPU years! That's a long time to wait for one result!

Our group has developed multiple new ways to simulate protein folding which can break the fundamental barrier of simulating experimental timescales by dividing the work between multiple processors in a new way -- with a near linear speed up in the number of processors. Thus, with power of Folding@Home (over 100,000 processors), we have successfully smashed the microsecond barrier, simulating milliseconds of folding time and helped to unlock the mystery of how proteins fold.

How to participate

To participate in this project read this guide.

Some pictures

Protein Protein structure Protein structure and functions Protein folding